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Numerous trace fossils are described from the Late Miocene sediments of the Bzenec Formation exposed at the
Gbely section (the Vienna Basin, Slovakia). During deposition of the sediments the area was part of the large,
long-lived brackish to freshwater Lake Pannon. Most of the trace fossils are attributed herein to Egbellichnus
jordidegiberti igen et ispec. nov. and are interpreted as burrows produced by decapod crustaceans, specifically
by a ghost shrimp of the family Callianassidae. This interpretation is based on two independent lines of evidence:
environmental requirements of large bioturbators and the burrow morphology itself. The new ichnotaxon is
distinguished from other related ichnotaxa by a combination of typically inclined (roughly at an angle of 45°)
cylindrical burrows, absence of lining, and tunnels making loops or bends at approximately right angles. The
burrow systems at Gbely document the survival of ghost shrimp long after the closure of all seaways and the
origin of Lake Pannon. As today, no ghost shrimp are known from long-lived brackish lakes. Egbellichnus from
Gbely is the only, although indirect, record of ghost shrimp from a brackish lake environment reported so far.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Decapod crustaceans are important elements of not onlymarine, but
also of brackish and freshwater environments (Dworschak, 2000a;
Felder, 2001; Crandall and Buhay, 2008; Yeo et al., 2008). Brackish
water has a salinity range between 0.5–30‰; thus, it is not considered
a precisely defined condition and covers a broad range of salinity re-
gimes. For many brackish surface waters, salinity can vary considerably
over space and/or time. Organisms inhabiting such an environment
must tolerate these fluctuations. Together with molluscs and poly-
chaetes (Wolff, 1973; Grassle and Grassle, 1974; Maggiore and Keppel,
2007), decapod crustaceans are among themost successfulmacroscopic
invaders of brackish-water environments. Three major decapod groups
made this transition: mud shrimps (Gebiidea: Upogebiidae), ghost
shrimps (Axiidea: Callianassidae) and true crabs (Brachyura). Ghost
shrimps nowadays constitute important components of the normalma-
rine near-shore macro-invertebrate assemblages and also of estuarine
environments with high salinity fluctuations (Dworschak, 2000a).
True freshwater brachyurous crabs constitute nearly 20 % of all known
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extant crab species in 14 families (Yeo et al., 2008); some of them are
able to live inland (Taylor and Greenaway, 1979; Waltham et al.,
2014; Williner et al., 2014).

Many decapod taxa inhabiting brackish water environment produce
burrows. Consequently, these can be identified in the sedimentological
record as trace fossils with characteristic features. Numerous trace
fossils found in the Late Miocene sediments of the Gbely section (the
Vienna Basin, Slovakia) are interpreted herein as burrows produced by
decapod crustaceans, specifically by ghost shrimp of the Callianassidae.
The first report on burrows made by “thalassinideans” from the Gbely
section can be found in Starek et al. (2010). The present contribution
builds further on the sedimentological, palaeontological and geochemi-
cal results of Starek et al. (2010).

The objectives of this paper are 1) the report of the studied
ichnoassemblage of the Gbely section; 2) description of a new
ichnogenus and ichnospecies; 3) the interpretation of its tracemaker
based on evidence from palaeoenvironmental reconstruction and
burrow morphology; and 4) providing arguments for the presence of
ghost shrimp in the long-lived brackish Lake Pannon.

2. Study area and methods

The Paratethyswas an epicontinental sea that developed in the Early
Oligocene as a consequence of Africa’s northward movement and
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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resulting European plate subduction. It was intermittently connected to
the Mediterranean and the Indo-Pacific (Rögl, 1998; Harzhauser and
Piller, 2007; Harzhauser et al., 2007). The area from present-day
Austria to Poland, Ukraine and Romania is called the Central Paratethys.

The Pannonian Basin formed in the late Early Miocene and in the
Middle Miocene as a result of extension and rifting governed by thrust-
ing in the surrounding Carpathian orogene (Horváth et al., 2006). At the
end of the Middle Miocene a significant sea-level regression resulted in
isolation of the intra-Carpathian waters from the rest of the Paratethys,
forming the large, long-lived brackish to freshwater Lake Pannon
(Magyar et al., 1999; Harzhauser and Mandic, 2008). It separated from
the Central Paratethys at about 11.6 Ma (Magyar et al., 1999; Vasiliev,
2006; Harzhauser and Piller, 2007). Since that time, shallow brackish-
marine conditions were typical of the Vienna Basin (Kováč et al., 1998,
2004, 2005; Magyar et al., 1999; Starek et al., 2010). The lake basin
was filled by progradation from the NE and NW (Magyar et al., 2007).
By the Early Pliocene, Lake Pannon became a shallow freshwater lake
and gradually it was completely filled with sediment (Magyar et al.,
1999).

The depositional systems of Lake Pannon are heterogeneous,
represented by alluvial and fluvial facies, ephemeral lake, swamp, and
subaquatic delta plain deposits passing continually to offshore pelitic
facies (Harzhauser and Tempfer, 2004; Kováč et al., 2005).

2.1. Previous ichnological research

Trace fossils of the deposits of the Pannon Lake were reported by
several authors. Szónoky (1978) reported unidentified burrows from
both shallow and relatively deep sublittoral environments of the
Lower Pannonian Formation (sensu Jámbor, 1980) characterized by
fine-grained, gray, homogeneous, calcareous clays andmarls. According
to Jámbor (1980, 1987), the most abundant trace fossils in this forma-
tion are a Y-shaped form classified as “Thalassinoides minimus” and
“Pectinaria burrows”; other common trace fossils are Spirisiphonella
pannonica and Arenicolites isp. Trace fossils studied by Jámbor (1980,
1987), however, come from the boreholes and their relation to the
ichnofacies as well as identification is dubious and need to be revised.

From the Szák Formation (the uppermost part of the Lower
Pannonian Formation sensu Jámbor, 1980), Cziczer et al. (2009) report-
ed Diplocraterion and “Y-shaped trace fossils”.

From the basal part of the Kálla Sand (Upper Pannonian Formation
sensu Jámbor, 1980), Arenicolites, Skolithos, Polykladichnus, funnel-
shaped trace fossils and burrows of vertebrates were reported by
Babinszski et al. (2003). Funnel-shaped trace fossils were found with
their producers in situ and were determined to be escape structures of
the bivalve Dreissenomya (Magyar et al., 2006). This ichnoassemblage
reflects an oxygenated environment with unstable substrate at depths
at the fair-weather wave-base influenced by storms.

From the sediments of the Bzenec Formation exposed at Gbely
section, Starek et al. (2010) reported several ichnofossils treated in the
open nomenclature, namely “Thalassinidean (types 1 and 2) burrows”
and “Conichnus-like conical ichnofossils”. “Thalassinidean burrows”
have recently been further studied and extensively sampled and
provide a basis for description of a new ichnotaxon erected herein.

2.2. Sedimentology and lithofacies of the Gbely section

The studied sedimentary sequence of fine-grained deposits is situat-
ed at the Gbely locality in the Slovak part of the Vienna Basin. The out-
crop is situated in an abandoned brick-yard situated approximately
1.2 km SSE from the centre of the town of Gbely (Fig. 1; coordinates
48° 42' 26.33" N; 17° 07' 12.74" E). The lithofacies exposed in the brick-
yard is part of the lacustrine-deltaic succession belonging to the Záhorie
Member of the Bzenec Formation deposited during the Late Miocene
(Vass, 2002). The ostracod associations as well as autochthonous pres-
ervation of Congeria subglobosa shells at the studied outcrop (Starek
et al., 2010) permitted assignment of the succession to the regional
Pannonian zone E sensu Papp (1951). This zone is supported by the os-
tracods Cyprideis obesa, C. heterostigma, Hemicytheria folliculosa, and
H. reniformis (Jiříček, 1985). The outcrop is biostratigraphically coeval
with clay deposits exposed in Hennersdorf, Austria (Harzhauser and
Mandic, 2004) where magnetostratigraphic measurements indicate
interval C5n (11.04–9.78 Ma) (Magyar et al., 2007).

The studied sequence can be divided into four intervals (Fig. 2). Two
of them are highly bioturbated (the lower and upper bioturbated
horizons). Between them there is a sequence with soft-sediment defor-
mation structures. These intervals correspond to diverse facies associa-
tions (FA) sensu Starek et al. (2010).

The lower bioturbated interval (BI 1 = FA 6+ FA 7) represented by
brown-grey clayey and silty beds has yielded completely and partially
lithified trace fossils (Figs. 3A–B). These beds reflect quiet deposition
from suspension in lacustrine embayments (FA 6) and coarser sedimen-
tary input (silt tofine sand) thatmay represent storm deposits or turbid
underflows discharged directly from fluvial or deltaic distributaries
during large floods (FA 7). BI 1 corresponds to the Congeria subglobosa
Beds as referred to in Starek et al. (2010).

The upper bioturbated interval (BI 2 = FA 8B+ FA 8C) represented
by rhythmic deposition of silty clay, silt, and fine sand reflecting succes-
sive progradation of a prodelta (FA 8B) and laterally migrating distal
bars (FA 8C) contains unlithified trace fossils (Figs. 3C–D, 4).

2.3. Palaeoenvironment

The brackish-water sedimentary environment in Lake Pannon is
documented by stable isotopes (Geary et al., 1989; Harzhauser et al.,
2007) and ostracod and mollusc associations (e.g. Kováč et al., 1998;
Pipík, 1998; Cziczer et al., 2009; Starek et al., 2010). The salinity of off-
shore waters ranged from 10–15 ‰. Only marginal parts of the lake
that were influenced by rivers and by deposition during the terminal
stage of Lake Pannon are represented by sediments with a fauna that
documents salinities of 0–15 ‰ or freshwater environments (Kováč
et al., 1998, 2005). The Gbely sequence was deposited in a brackish-
water environment influenced by freshwater input. The salinity can be
determined as 3–15‰ on the basis of the presence of the ostracod
genera Cyprideis, Euxinocythere, and Loxoconcha (Starek et al., 2010).
The analysed sediments consist of clay, silt, and very fine sand. They
are interpreted as part of a brackish lacustrine-deltaic sequence depos-
ited below the fair-weather wave-base (Starek et al., 2010).

2.4. Material and methods

Lithified trace fossils were taken from the outcrop with documented
orientations. Subsequently, trace fossils were packed in plastic bags
to prevent desiccation. Nevertheless, considerable material was
destroyed: poorly lithified casts disintegrated.

A surface of each preserved specimen (burrow fragment) was
cleaned of clay by slow running water and a paintbrush. Wet casts
were impregnated immediately by an acrylic sealer. The acrylic sealer
hardened trace fossils and prevented further damage and cracking.
Unlithified trace fossils were documented by taking photographs of
vertical and horizontal serial sections in outcrops.

Isolated burrow parts were oriented in the position theywere found
in the section and comparedwith extant and fossil burrow systems. This
procedure provided clues to interpretation of the studied material (see
chapter 4.1.1).

The ichnoassemblage of the studied section seemingly consists of
several different structures (Fig. 4). After close examination, however,
most of them were identified as parts of the single trace fossil (com-
pound structure sensu Bertling et al., 2006). We refrain to keep this
prominent trace fossil in open nomenclature as it possesses distinct fea-
tures and so far it has not been reported from thedeposits of the Pannon
Lake. Thus, a new genus and species are proposed for this trace fossil.



Fig. 1. Study area.
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3. Systematic ichnology

The material examined herein is deposited at the Natural History
Museum of the Slovak National Museum in Bratislava (Slovakia)
under the repository numbers SNM-Z 24165, SNM-Z 37735–37747.

3.1. Egbellichnus igen. nov.

Etymology: after Egbell, the Hungarian and German name for the
town Gbely (close to the type locality) and ιχνος, from the Greek,
meaning trace.

Diagnosis: Vertical, inclined, or horizontal cylindrical burrows of
constant diameter without wall structure. The burrows are circular in
cross-section. An inclined component typically slopes at ca. 45°; tunnels
make loops resembling a spiral or bend at approximately right angles;
the resulting burrow shape resembles a corkscrew or an irregular zigzag
pattern depending on alternating directions. First to second and more
orders of upward, downward or horizontal Y-shaped branching may
occur on main burrows. Points of bifurcation and bending have usually
an enlarged diameter.

Type ichnospecies: Egbellichnus jordidegiberti isp. nov. (only known
ichnospecies).

Remarks: This ichnogenus is distinguished from other related
ichnotaxa by a combination of typically inclined (roughly at 45°) cylin-
drical burrows, absence of lining, and tunnels making loops or bends.
For Thalassinoides Y- or T-branching is typical, thus, resembling
Egbellichnus, however, a complex pattern of loops and bendings
exhibitied by the latter ichnogenus is absent in Thalassinoides.

For Gyrolithes, a tunnel forms a dextral or sinistral circular helix with
rather constant radius of whorls (Bromley and Frey, 1974; Fillion and
Pickerill, 1990), whereas in Egbellichnus the loops are irregular and
bendings often are in the right angle.

Egbellichnus clearly represents parts of a larger three-dimensional
open burrow system which was subsequently passively filled with
sediment. As such, the resulted trace fossil is considered a compound
structure. Similarly inclined burrow tunnels can be produced by several
crab taxa (e.g. Gecarcinidae, Macrophthalmidae, Ocypodidae); these,
however, usually lack branchings (Vannini, 1980).

Simple fragments or vertical shafts of Egbellichnus are slightly rem-
iniscent to the Dreissenomya burrows described from Lake Pannon
(e.g. Magyar et al., 2006). Presence of inclined burrow parts,
branchings and spirally-shaped components in Egbellichnus and
their absence in mollusc burrows clearly distinguish both ichnofossils
from each other.
3.2. Egbellichnus jordidegiberti isp. nov.

2010. “Thalassinidean (types 1 and 2) burrows“. Starek, Pipík, and
Hagarová. p. 379.



Fig. 2. The studied section at Gbely (modified after Starek et al., 2010). Lower bioturbated interval = BI 1; upper bioturbated interval = BI 2. For details see text.
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Fig. 3. Trace fossils and bioturbation at the Gbely section. (A) Lower bioturbated interval (BI 1), vertical section. (B) Lower bioturbated interval (BI 1), horizontal section; note horizontal
branching. (C) Upper bioturbated interval (BI 2), vertical section, with a closer view of a selected part (D).
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Etymology: After Jordi M. de Gibert, an enthusiastic ichnologist, a
friend and collegue of the authors, who suddently passed away in
September 2012.
Diagnosis: As for the ichnogenus.
Holotype: SNM-Z 37741 (Fig. 5A).
Paratypes: SNM-Z 37738, SNM-Z 37742–37745.
Other material: SNM-Z 24165, SNM-Z 37735–37737, SNM-Z
37739–37740.
Description: The trace fossil consists of unlined, essentially cylindri-
cal components; the diameter may vary between individual
components, ranging from8 to 70mm(Figs. 5, 6, 7A); a single tunnel
usually has a constant diameter for its entire preserved length. The
passive fill is homogeneous; tiny, well delineated, concentric ferrugi-
nous zones occasionally can be seen on the cross-section (Fig. 6D).

The trace is composed of several parts (Fig. 8). The horizontal com-
ponent often shows branching; two forms have been observed. The
first type can be considered a true Thalassinoides-like branching
(Figs. 5B, 9B). The second type seems to be a successive branching,
i.e. it consists of two tunnels of different diameter (Fig. 5E) although
interpreting these structures as preservational artefacts cannot be



Fig. 4. Trace fossils and bioturbation at the Gbely section. (A) Burrow branched horizontally (black arrow). (B–C) Burrow branched vertically upward. (D) Upward and downward
branching. Black arrow points to supposed connection between two Y-shaped structures. White arrow indicates branching in horizontal direction. (E) Different view on the same freshly
excavated section wall as in D.
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excluded. Regular rounded winding (meandering) of individual simple
tunnels in a horizontal direction without branching has not been ob-
served. The subvertical component consists of simple shafts connecting
parts of the burrow system. The inclined component is themost distinc-
tive feature of this ichnotaxon. This component consists of tunnels
or shafts which are inclined typically at an angle of about 45° to the
horizontal surface. Two main morphologies can be recognized in this
component; the tunnel makes loops resembling spirally shaped
Gyrolithes-like burrows, or/and the tunnel turns at right angle
(Figs. 5C, F). If the first component prevails the burrow shape resembles
a corkscrew (Fig. 6); if the second prevails, the shape follows an irregu-
lar zigzag pattern (Fig. 5B). The two morphologies can alternate.
Commonly at points of bifurcation the diameter of a burrow is
enlarged (Fig. 8A). Such enlargement is also present in inclined tunnels
that bend horizontally at 90° (Figs. 5C, F).

Spherical chambers with radiating shafts are directly connected to
the burrow system (Figs. 9A, D). The diameter of radiating shafts ranges
from 1.5 mm to 8 mm, whereas the diameter of chambers ranges from
15 mm to 22 mm.

Remarks: Egbellichnus jordidegiberti isp. nov. is considered a typical
compound trace fossil which is a result from the changing behaviour
of a single producer. Bertling et al. (2006) noted it can represent
two different situations: successive or simultaneous formation. In
the case of E. jordidegiberti isp. nov. we are dealing with a burrow



Fig. 5. Egbellichnus jordidegiberti igen et isp. nov. (A) Holotype SNM-Z 37741. (B) Paratype SNM-Z 37742. (C) Paratype SNM-Z 37743. (D) Paratype SNM-Z 37744. (E) Paratype SNM-Z
37745. (F) SNM-Z 37739 (top), SNM-Z 37740 (bottom). Top parts of the figures depict tunnels oriented in side view (in situ position), below they are viewed from above. Scale bar equals
10 mm.
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structure formed simultaneously as documented by uniform infill of
the trace fossils.

The burrow diameter is virtually always constant within the same
tunnel suggesting that each burrow was inhabited by one (or only a
few) animal(s). In some cases the diameter of side branches is notice-
ably smaller (8–20 mm) than the main burrow (Fig. 5E).

One burrow is evidently branched downward (Fig. 7A). The burrow
length was estimated according to field observation to have been about
1.5m tomore than 2m. Collected fragments of one specimen attained a
length of 52 cm (Fig. 7A).
Spherical chambers with radiating shafts can be compared to
Maiakarichnus currani Verde and Martínez, 2004. Unlike Maiakarichnus
the chamber is more regularly spherical and shafts radiate in all direc-
tions upward and downward; in Maiakarichnus thin shafts radiate
mainly in stratigraphically upward direction from the upper part and
from sides (Verde and Martínez, 2004). Possibility that the chambers
represent concretions can be excluded. Concretions are roundedmasses
of mineral matter found in sedimentary rock; the chambers described
herein have the same sedimentary filling as other lithified trace fossils
and are connected to the main burrow (Fig. 9A). Based on the criteria



Fig. 6. Egbellichnus jordidegiberti igen et isp. nov., paratype SNM-Z 37738 viewed from different angles. (A–C) Side views oriented in the in situ position. Scale bar equals 10 mm.

57M. Hyžný et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 425 (2015) 50–66
given by Pickerill (1994), the chambers are considered an ethological
structure: 1) they are of uniform size; 2) they occur as a regular,
complex and repetitive geometric form; 3) they possess very delicate
morphologic features; 4) and they are preserved in full relief. The
chambers are relatively rare (two collected samples and four field
observations; Fig. 9) but they were found in both bioturbated intervals
of the studied section.

In addition to the true branching points passive “junctions” of
burrow branches also were observed; these, however, are considered
to be the result of taphonomic processes. Preserved burrow casts have
a greater diameter than the tunnels themselves; thus, when two tun-
nels (or parts of a single tunnel) were close to each other, the burrow
walls nearly touch each other.
No trace fossil reported from the Lake Pannon previously (Jámbor,
1980, 1987; Babinszski et al., 2003; Cziczer et al., 2009) can be directly
compared to E. jordidegiberti isp. nov.

Besides Egbellichnus jordidegiberti n. igen. n. isp., several other
components have been recognized in the studied section. In BI 1,
vertical cylindrical shafts with knobby surface and a diameter of
around 3–5 cm rarely occur. Knobs are oriented horizontally
and they clearly represent bioglyphs (Figs. 7B–C). This trace fossil
probably is part of a larger and more complex burrow system of
Egbellichnus; but, because it was found only in BI 1 the trace fossil
characteristics are not included in the description of Egbellichnus.
Moreover, the preservation of bioglyphs is atypical for the entire
ichnoassemblage.



Fig. 7. Ichnoassemblage at the Gbely section. (A) Egbellichnus jordidegiberti igen et isp. nov., large burrow part exhibiting lateral tunnel branching downward (SNM-Z 24165); the figure in
themiddle is oriented in in situ position. (B) Vertical cylindrical shaftwith knobby surface, SNM-Z 37746. (C) Vertical cylindrical shaft with knobby surface, SNM-Z 37747. Scale bar equals
10 mm.

58 M. Hyžný et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 425 (2015) 50–66
In close proximity to the Egbellichnus burrows, small shafts with
diameters of 1–3 mm occur. They form a maze of tiny tubes; some of
them are connected (perpendicularly or obliquely) to larger burrows
(Fig. 7A).

In the uppermost part of BI 2 there is a continuous transition to the
succession with preserved equilibrichnia with mechanical collapse
and fluid-upwelling structures (Starek et al., 2010). It is possible that
formation of some of these mechanical structures were triggered by
animal escape activity. Vertical equilibrichnia possibly represent escape
structures of bivalves, most probably Dreissenomya, although no shells
were found (cf. Starek et al., 2010).

In the bioturbated intervals, no vertical partitioning of the communi-
ty was observed. Both, in the vertical and horizontal aspect, the trace-
fossil assemblage is uniform.
3.3. Mode of preservation.

The trace fossils are preserved either as lithified yellowish casts of
burrows (without preserved bioglyphs) in dark clayey sediment or as
unlithified trace fossils in silty/sandy sediments. Associations of both
preservation types are composed of very similar trace fossil assemblage;
i.e. both bioturbated horizons are dominated by the newly recognized
trace fossil Egbellichnus jordidegiberti n. igen. n. isp. In the surrounding
dark clay of BI 1 partially or completely lithified yellowish trace fossils
are clearly visible (Fig. 3A). The fill is composed of silt with a better po-
tential for lithification than the surrounding plastic clay and silty clay. In
BI 2 coarser siltstone to sandstone beds with unlithified trace fossils are
exposed (Figs. 3C–D). Trace fossils are readily distinguished from the
surrounding sediment due to the halo effect of burrows (Bromley,
1996). The largest burrows also contain a dark clay filling. Walls or
lining were not recognized.

Lithification of trace fossils was probably caused by a fluid migra-
tion inside the burrow systems. Predisposition for easier fluid migra-
tion was supported by open burrow systems and coarse filling of
burrows. Lithified silty/sandy burrow casts were cemented by ferrugi-
nous and calcareous compounds. Ferruginous concentric structures
are visible on transverse cuts of burrows (Figs. 3B, 6D, F). Cross
sections of the horizontal and subhorizontal burrows are elliptic to
circular, thus, compaction had no significant effect on themorphology
of the trace fossils. Sections with lithified trace fossils contain also
sporadically lithified thin beds. Similar ferruginous preservation of
trace fossils was reported from Miocene sandy silts of southern
Spain (Muñiz et al., 2010; de Gibert et al., 2013).

The light yellow/brown colour of the burrow walls produced in the
Gbely section by early diagenetic pigmenation from pore water indi-
cates more oxidizing conditions in the burrow than in the subsurface
sediments. Such conditions are typical for ghost shrimp burrows, in
which physico-chemical and microbial properties are more similar to
the surface sediments than to the surrounding subsurface sediments
(Bird et al., 2000). In this respect the mode of preservation is in agree-
ment with the tracemaker identification as discussed in chapter 4.1.

4. Discussion

4.1. Identification of tracemaker

The trace fossils described above show a suite of characters which is
typically interpreted as arthropod burrows generally attributed to crus-
taceans (e.g. Frey et al., 1984; Bromley, 1996; Bishop and Williams,



Fig. 8. Egbellichnus jordidegiberti igen. et isp. nov. (A) Large burrow part in situ.White arrows point to enlarged portions at point of bifurcation. In white rectangle an inclined burrow part
with right-angle bending is preserved. In black rectangle a spiral-shaped burrow part is preserved. (B–D) Burrow parts analogous to those in A (not the same specimens). Scale bar equals
10 mm.
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2005; Seilacher, 2007). One of these characters, Y- or T-shaped
branching, can be occasionally attributed to invertebrate groups
different from crustaceans (e.g. some enteropneusts, echiurans; see
Pervesler and Uchman, 2009: p. 141). However, if present, such Y-
shaped branching is usually not part of a larger complex burrow
system and is positioned vertically. In the studied section, the trace
fossils (especially unlithified) may superficially look like simple up-
right Y-shaped structures (Figs. 3C–D, 4D–E), and thus, resembling
Parmaichnus, Polykladichnus or Psilonichnus, especially on freshly
excavated section wall. Removing the sediment, however, clearly
showed that in our case the shafts and tunnels are parts of larger
burrow system, and thus, they represent a compound structure. The
tunnels are connected to each other and simultaneously they attain
roughly the same diameter. In conclusion, the morphology of studied
burrows strongly suggests that the tracemaker is a crustacean, possi-
bly a malacostracan.

Among modern malacostracans there are basically two higher taxa,
Decapoda and Stomatopoda, capable of producing large burrows com-
parable with those described herein. Stomatopods construct shallow
and rather simple burrows (Myers, 1979). Thus, it seems that decapod
crustaceans are the most likely tracemakers.

There are several higher taxa of decapod crustaceans in which the
construction of permanent burrows or burrow systems evolved
independently. Unfortunately, identifying decapods as producers of
burrows without direct evidence of in situ preservation is rather
difficult; ichnofossils commonly attributed to decapod crustaceans
usually do not contain any body fossils. Such associations are rare
(Stilwell et al., 1997; Bishop and Williams, 2005; Hyžný, 2011; Hyžný
and Hudáčková, 2012). Species that produce permanent burrows have
been identified in six decapod infraorders sensu De Grave et al.
(2009): Caridea (the family Alpheidae only), Astacidea, Glypheidea,
Gebiidea, Axiidea, and Brachyura (e.g. families Gecarcinucidae,
Goneplacidae, Portunidae, Panopeidae, Gecarcinidae, Sesarmidae,
Varunidae, Dotiliidae,Macrophthalmidae,Mictyridae, andOcypodidae).
The most complex burrow systems are constructed by members of the
infraorders Gebiidea and Axiidea (in the past collectively known as
thalassinideans, see Dworschak et al., 2012; Poore et al., 2014). Extant
members of Laomediidae and Upogebiidae (Gebiidea), and of
Axianassidae and Callianassidae (Axiidea) are known to construct very
complex burrow systems, some of which can reach more than 1 metre
in depth (e.g. Dworschak and Ott, 1993).

Geometrically complex burrow systems comparable to the material
presented herein are produced only by the Alpheidae (e.g. Shinn, 1968:
pl. 109, Fig. 1; Dworschak and Pervesler, 2002: Fig. 1), some crayfishes
(Astacidea) (Hasiotis andMitchell, 1993), and axiideans and gebiideans
(Griffis and Suchanek, 1991; Dworschak and Ott, 1993; Nickell and
Atkinson, 1995; Dworschak, 2004). These three decapod groups also
have been identified as excavating their burrows in a similar manner
(Atkinson and Taylor, 1988). We argue that in the present case the pre-
sumed burrow morphologies of studied samples can narrow signifi-
cantly the identity of the tracemaker. In this respect, we use basically
two independent lines of evidence: 1) interpreting the tracemaker
based on the burrowmorphology itself and 2) inferring the tracemaker
from the ecological conditions interpreted from the study of other
animal groups and sedimentology.

4.1.1. Burrow morphology
The presence of Y or T branching (positioned either horizontally

or vertically), spirally shaped tunnels when viewed from above, more-
or-less constant diameter of most burrow-system tunnels with



Fig. 9. Egbellichnus jordidegiberti igen. et isp. nov. (A) Burrowpart containing a spherical chamberwith several tiny shafts (SNM-Z 37735). The chamberwas connected to a burrow system
(A1); it disintegratedduring the preparation process (A2); A3: Line drawing of the same structure. (B) Horizontal branching (SNM-Z 37736); note tiny tunnels attached to a larger burrow.
(C) Cross-section of SNM-Z 24165 (see Fig. 7A). (D) Chamber cast with thin shafts (SNM-Z 37737), D1: in situ position in the outcrop, D2: side view, D3: view from above. Scale bar equals
10 mm.
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swellings interpreted in some taxa as turning chambers, are all charac-
ters typical for axiidean and gebiidean shrimps.Members of other deca-
pod groups usually produce simpler burrows with limited branching
(e.g. marine Astacidea, supratidal and intertidal brachyuran crabs) or
rather complex horizontal mazes (e.g. the caridean family Alpheidae,
or the brachyuran crab Goneplax rhomboides). In contrast, highly struc-
tured burrow systems are typical for axiidean and gebiidean shrimps.
They are considered to be producers of the most complex burrow sys-
tems in the entire animal kingdom, and they construct species-specific
burrows (Griffis and Suchanek, 1991; Dworschak and Ott, 1993;
Nickell and Atkinson, 1995; Felder, 2001; Dworschak, 2004). Griffis
and Suchanek (1991) proposed a simplemodel to classify their architec-
ture and trophicmode. Nickell andAtkinson (1995) criticised themodel
for being too simplistic. De Gibert and Ekdale (2010) pointed out diffi-
culties with applying the burrow classification of Griffis and Suchanek
(1991) in the trace fossil record, because it is usually hard to isolate
individual burrow systems and mounds at the openings and number
of openings are usually not preserved.

Trace fossils roughly similar to Egbellichnus from freshwater envi-
ronments and interpreted as crayfish burrows have been assigned to
different ichnogenera (Hasiotis and Mitchell, 1993; Zonneveld et al.,
2006; Bedatou et al., 2008; see Bedatou et al., 2008 for their review).
Crayfish burrow morphologies include both simple and complex ar-
chitectures with varying degrees of branching, chamber and vertical
shafts development (Hobbs, 1981; Hasiotis and Mitchell, 1993).
They typically exhibit surficial morphologies, i.e. bioglyphs (Hasiotis
and Mitchell, 1993), which are missing in our material. The preserva-
tion of bioglyphs is related to the consistency of the substrate (Seike
and Nara, 2007); thus, their absence in our material can be explained
in the terms of the nature of the sediment. However, crayfish burrows
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are characteristic of continental rather than marine-influenced facies
(Hasiotis and Mitchell, 1993) and are never built in the subtidal zone
(Hobbs, 1981).

The studied vertical and subvertical burrow system parts are remi-
niscent of burrows of brachyuran crabs exemplified by members of
the families Gecarcinidae, Ocypodidae, and Sesarmidae (Vannini,
1980; Seike and Nara, 2008). Branching is, however, uncommon in bur-
rows of these taxa and complex burrows comparable to our material
were reported only in a few species (Vannini, 1980). It is important to
note that crabburrowswithmorphology comparable to the studiedma-
terial are known from intertidal environment, whereas Egbellichnus
clearly originated in the sublittoral zone (Starek et al., 2010).

Of the gebiideans, only burrows of the Axianassidae (Axianassa),
Laomediidae (Jaxea), and Upogebiidae (Upogebia) are sufficiently
known. Burrows of Axianassa australis are characterized by spiral verti-
cal shafts (Gyrolithes-like) leading to wide horizontal galleries from
which several evenly proportioned corkscrew-shaped spirals branch
off and lead to further horizontal galleries at greater sediment depths
(Dworschak and Rodrigues, 1997; see also Felder, 2001). Spirally
shaped tunnels in our material are not positioned vertically as in
Axianassa burrows, but rather subvertically with the axis of the cork-
screw shape inclined at about 45 degrees.Moreover, nowidened galler-
ies have been identified in our material.

The laomediid Jaxea produces burrow systems with rather large
swollen chambers – galleries connected to horizontal and subhorizontal
tunnels of smaller diameter (Pervesler and Dworschak, 1985). Howev-
er, the diameter itself does not correspond to the body of an animal
and changes throughout the entire burrow system. Presence of large
galleries and changing burrow diameter is not consistent with
Egbellichnus.

The Upogebiidae generally produce vertical Y-shaped burrows
consisting of a U- or double U-shaped gallery and a basal vertical shaft
(e.g. Ott et al., 1976; Dworschak, 1983; Curran and Martin, 2003). Re-
cently, Pervesler and Uchman (2009) identified upogebiid burrows in
the Pleistocene of Italy. They discussed identifying Upogebiidae as a
tracemaker in the fossil record and stated that „fossil burrows without
turning chambers should not be attributed to the work of upogebiids“
(Pervesler andUchman, 2009: p. 139). As discussed in their paper, turn-
ing chambers in the upper part of the burrow are an obligatory feature
of Upogebia burrows. Addressing this issue, it is important to note that
identifying turning chambers in the fossil record depends on the
interpreted functional morphology of the studied burrow. Thus, the
term itself mirrors the function of a chamber, not its general morpholo-
gy. Therefore, turning chambers can be difficult to identify in the fossil
burrow systems. What really is typical for upogebiid burrows is the
presence of turning chambers in the upper part of a burrow (Griffis
and Suchanek, 1991: Fig. 1; Pervesler and Uchman, 2009: Figs. 5I–K);
that is, in the shaft before the junction with a basal shaft (see above).
No such structure can be identified in Egbellichnus.

Among axiideans, the Axiidae (Axius, Axiopsis) and Strahlaxiidae
(Neaxius) seem to construct rather simple burrows without complex
morphology (Pemberton et al., 1976; Dworschak and Ott, 1993; Kneer
et al., 2008; Vonk et al., 2008). In contrast, members of the
Callianassidae construct the most complex and extensive burrow sys-
tems of all known fossorial shrimps. Thus,with respect to the discussion
above, it is probable that the producer of the studied burrows is amem-
ber of the Callianassidae. Although closer assignment is not currently
possible, we compared the architecture of callianassid burrows with
our material and found some striking similarities.

Burrow parts shaped similarly to that of the Egbellichnus burrow
fragments have been identified in a handful of callianassid genera clas-
sified within the Callianassinae: Biffarius, Callianassa, Paratrypaea, and
Pestarella; and one genus of the Callichirinae: Lepidophthalmus. Burrows
of these callianassine genera possess inclined, spirally shapedmain tun-
nels oftenwith angular turningswith slightly swollen areas (whichmay
be interpreted as turning chambers). The burrow itself is more complex
in vertical aspect with branching occurring mainly in horizontal aspect.
Suchmorphologies (Fig. 10) have been fully, or at least partly, described
in Biffarius filholi (Berkenbusch and Rowden, 2000: Fig. 2), Callianassa
truncata (Ziebis et al., 1996: Fig. 2), Paratrypaea bouvieri (Dworschak
and Pervesler, 1988: pl. 2), and several species of Pestarella: P. candida
(Dworschak, 2002: Fig. 2a, b), P. tyrrhena (Dworschak, 1987: Fig. 1b;
2001: Fig. 2; Dworschak et al., 2006: Fig. 1; Koller et al., 2006: Fig. 1)
and P. whitei (Dworschak, 2002: Fig. 2c, d). Finally, Dworschak
(2000b: Fig. 3) described burrows of Lepidophthalmus louisianensis
which are similar to Egbellichnus burrows in posssessing rather long
subvertical main shafts with ramified horizontal side branches.

Thus, Egbellichnus is interpreted as a decapod dwelling trace. In addi-
tion, the studied burrow systems show rather lowmorphological diver-
sity suggesting the producers to be members of a single species, most
probably a callianassid ghost shrimp.

4.1.2. Tolerance of brackish environments.
Ichnoassemblages of brackish-water environments typically are

taxonomically impoverished in comparison with fully marine de-
posits. They are characterized by several features, notably by low
ichnodiversity, dominance of infaunal traces rather than epifaunal
trails, simple structures produced by trophic generalists, and presence
of monospecific suites (Wightman et al., 1987; Pemberton and
Wightman, 1992). Brackish-water ichnofaunas reported from the
Pliocene strata of Spain and France (e.g. Muñiz and Mayoral, 1998)
are commonly depauperate and dominated by crustacean burrows.
The same is true for the Gbely section. Buatois et al. (2005) noted
that Miocene estuarine deposits exhibit smaller trace fossils attribut-
ed to annelids, but not necessarily smaller burrows constructed by
crustaceans.

There is only a limited number of invertebrate animals which are
able to construct complex burrow system in the brackish environment;
thus, in an environment identified at the studied locality. It is obvious
that the tracemaker must have been an animal able to tolerate brackish
waters with fluctuating salinity. From macrocrustaceans constructing
complex burrows only few groups are able to tolerate reduced salinity
for long periods.

Alpheid shrimps usually inhabit marine, shallow tropical and sub-
tropical waters (Chace, 1988), only a few have colonized oligohaline
or freshwater habitats (Yeo and Ng, 1996). Their burrow diameter is
relatively small (e.g. Dworschak and Pervesler, 2002) in comparison
with Egbellichnus from Gbely. In this respect it is worth noting that
large interconnected burrows from the salt marshes of Georgia original-
ly interpreted as being produced by alpheid shrimps (Basan and Frey,
1977) were re-interpreted as being made by a mud crab, Panopeus
herbstii (Martin, 2013).

Virtually all crayfish are freshwater animals tolerating low salinity
fluctuations (Crandall and Buhay, 2008) andmany burrow in soil with
a connection to the water table (Hobbs, 1981; Hasiotis and Mitchell,
1993). Although Caspiastacus from the Caspian Sea lives in brackish
water (12–13‰), it is not known to make complex permanent
burrows, and it reaches its greatest abundance at a depth of ca. 10 m
(Cherkashina, 1999).

There are several brachyuran families inhabiting brackish-water
environments. Of burrowing taxa, the family Ocypodidae is the most
familiar. Ocypodids, however, do not construct complex burrow sys-
tems and are partly connected to the marine environment, where
they release their eggs. Moreover the burrow morphology itself
(Vannini, 1980; de Gibert et al., 2013) does not fully correspond to
Egbellichnus. Burrowing crabs are typical of intertidal areas (upper-in-
tertidal zone), and they do not build their burrows below the fair-
weather wave-base (e.g. Vannini, 1980; Netto and Grangeiro, 2009;
de Gibert et al., 2013), as is the case in Egbellichnus.

Axiideans and gebiideans are known to tolerate relatively high salin-
ity fluctuations also inhabiting brackish-water environments (see
below). Thus, we argue for an axiidean or gebiidean decapod crustacean



Fig. 10. Burrow morphology of extant callianassid ghost shrimps compared to Egbellichnus jordidegiberti igen. et isp. nov. (A–B) Lepidophthalmus louisianensis, after Dworschak
(2000b). (C) Paratrypaea bouvieri, after Dworschak and Pervesler (1988). (D–I) Pestarella tyrrhena; D, G, F after Dworschak et al. (2006); E after Dworschak (1987); H, I after
Dworschak (2001). (J–K) Pestarella whitei, after Dworschak (2002). (L–M) Egbellichnus jordidegiberti igen. et isp. nov. as preserved in the studied section, see Fig. 3A. All burrow
schemes are to scale.
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as the tracemaker. Unfortunately, no detailed analysis of the distribu-
tion of axiidean and gebiidean species in relation to salinity exists, as
this parameter is usually not recorded or mentioned in the literature.
There are some species which prefer marine habitats, whereas others
are found in brackish waters (Dworschak, 2000a, 2005).
Many axiidean and gebiidean species are known to inhabit
estuaries; thus, they live in an environment both under fluvial (fresh-
water) and tidal influences. For instance, the Upogebiidae are able to
tolerate a salinity range from fully marine (36 ‰) to salinity of 9 ‰ in
freshwater-influenced areas (Dworschak, 1987). In this respect the
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callianassid genus Lepidophthalmus is themost extreme example as it is
able to tolerate freshwater environments (Dworschak, 2007). Generally
it is concentrated in intertidal and shallow subtidal substrates ranging
from sandy mud to organic silty sand. Felder and Lovett (1989)
characterized Lepidophthalmus louisianensis as adapted to oligohaline
habitats of coastal marshes, tidal channels and estuarine embay-
ments. In this respect, osmoregulatory adaptations of adults and
larvae were studied by Felder (1978) and Felder et al. (1986). They
are also known to tolerate periodic anoxia in their burrows (Felder,
1979). Callianassa kraussi (some authors classify it as a member of
Callichirus, see Hyžný and Müller, 2010) is considered to be the
ecological equivalent of L. louisianensis in South Africa (Felder and
Lovett, 1989). Lepidophthalmus turneranus has been reported to
migrate up rivers in West Africa (Vanhöffen, 1911).

Thus, it seems most reasonable to assume that the tracemaker of
Egbellichnus jordidegiberti was an axiidean or gebiidean shrimp, most
probably a member of the family Callianassidae.

4.2. Biological aspects of the tracemaker

Among callianassid ghost shrimps, several life strategies have been
adopted (Griffis and Suchanek, 1991; Felder, 2001), but because of the
fragmentary nature of the Egbellichnus burrow system we refrain from
inferring the main trophic mode of the tracemaker. Nevertheless,
some phenomena commonly related with callianassid life strategies
can be mentioned and briefly discussed.

4.2.1. Juvenile-adult association of tracemakers
The Egbellichnus association exhibits burrows with variable diame-

ter but the same morphological features. We interpret them here as a
juvenile-adult association. Association of juvenile and adult burrows
has been reported previously in Upogebia affinis (Frey and Howard,
1975) and Nihonotrypaea japonica (Tamaki and Ingole, 1993). Several
examples of juvenile-adult association are known in the fossil record
of axiidean (or other crustacean) burrows; Howard (1966) described
such an association for Thalassinoides from the Cretaceous of Utah;
Curran (1985) for Ophiomorpha from the Cretaceous of Delaware; de
Gibert (1996) and de Gibert et al. (1999) described the same for
Sinusichnus from the Pliocene of Spain and France. From extant environ-
ments, bimodality in populations has been documented in N. japonica
(Tamaki and Ingole, 1993) and Biffarius filholi (Berkenbusch and
Rowden, 1998). More discussion on this topic with respect to the fossil
record was provided by de Gibert et al. (2006).

A juvenile-adult association is occasionally connected with utiliza-
tion of adult burrows by juveniles. In callianassids this behaviour has
been reported in several extant taxa: Callianassa kraussi (Forbes,
1973), Neotrypaea californiensis (Swinbanks, 1981), and N. japonica
(Tamaki et al., 1992; Tamaki and Ingole, 1993). Usually it can be identi-
fied in burrow casts as juvenile branches lead off from a stouter, adult
structure. de Gibert et al. (2006) reported this phenomenon in the fossil
record (Ophiomorpha puerilis from the Pleistocene of Brazil). The tun-
nels with distinctly smaller diameter attached to larger Egbellichnus
burrow system parts (Fig. 7A) may actually represent the juvenile
occupancy.

Forbes (1973) and Frey and Howard (1975) described juvenile bur-
rows as originating in adult burrow chambers that they interpreted to
be brood chambers. Similarly, in the fossil record, Curran (1976) and
Curran and Frey (1977) described Ophiomorpha from the Pleistocene
of North Carolina as possible callianassid brood structures. Later,
Verde and Martínez (2004) described the same structures from the
Miocene of Uruguay and on its basis formally erected the new
ichnogenus Maiakarichnus. Spherical chambers with radiating shafts of
Egbellichnus (Fig. 9) are reminiscent of Maiakarichnus but differ in hav-
ing shafts radiating in all directions. Because only a limited number of
samples with such morphology has been recovered, we are reluctant
to further speculate on their function, and therefore, we accept
interpretation of them as brood structures of the supposed callianassid
tracemaker.

4.2.2. Commensalism
A maze of tiny tubes is occassionally preserved in the surroundings

of the Egbellichnus burrow system. These tubesmay be attached directly
to the tunnels themselves and if considered them as contemporaneous
the smaller tubes can be interpreted as having been produced by com-
mensal organisms, such asworms, living in direct proximity to orwithin
decapod crustacean burrows. Such associations have been observed
commonly both in extant habitats (Atkinson and Taylor, 2005) and
trace fossil assemblages (e.g. de Gibert et al., 2006). Because large bur-
rows like those of callianassid ghost shrimps influence the surrounding
substrate (e.g. Ziebis et al., 1996; Bird et al., 2000) organisms which
would normally not occur at the place are present.

Numerous associates and ectosymbionts across different higher taxa
are commonly found in burrows of callianassid shimps (and other
axiideans and gebiideans) (e.g., Atkinson and Taylor, 2005; Kneer
et al., 2008). In salinity-stressed environments, however, limited num-
bers of commensals can be expected to occur with callianassid burrows.
Major infaunal animals that have invaded and tend to dominate
brackish systems include bivalves, fossorial shrimps (axiideans and
gebiideans), amphipods, polychaetes and threadworms (Buatois et al.,
2005). Diminution and lower diversity with higher salinity stress have
been documented in modern environments; size reduction, however,
typically is displayed by annelid traces, but not necessarily in crustacean
burrows (Buatois et al., 2005 and references therein). Thus, polychaetes
seem to be themost probable candidates for the producers of tiny tubes
associated with Egbellichnus burrows.

4.2.3. Survival of ghost shrimps in Lake Pannon
Endemic species are often documented from long-lived brackish

(Caspian Sea; e.g. Dumont, 1998) and freshwater lakes (Malili, Tangan-
yika; e.g. Rintelen and Cai, 2009 and Snoeks, 2000, respectively). During
LateMiocene time, the Vienna Basinwas an embayment of Lake Pannon
which was ecologically comparable with today's Caspian Sea. In fact, a
high rate of endemism among several animal groups (Dinoflagellata,
Mollusca, Ostracoda) of Lake Pannon has been documented previously
(Magyar et al., 1999; Müller et al., 1999; Pipík, 2007; Danielopol et al.,
2008; Harzhauser and Mandic, 2008; Cziczer et al., 2009).

Today, no ghost shrimp are known from long-lived brackish lakes.
Nevertheless, the fossil record of the Central Paratethys ghost shrimp
is rather robust (Hyžný and Müller, 2010, 2012; Hyžný, 2011, 2012a,b;
Hyžný andHudáčková, 2012;Hyžný andDulai, 2014); thus, their persis-
tence in Lake Pannon after seaway closure can be expected, although no
callianassid body fossils from the Upper Miocene of the study area have
been found so far. The adaptations of ghost shrimps as discussed in
chapter 4.1.2 demonstrate that this animal group has abilities to utilize
new ecological niches. Todays salinity-stressed environments are
commonly inhabited by ghost shrimps. Also, fossil callianassid remains
are known from settings with salinity fluctuations (Turek et al., 1988;
Hyžný and Hudáčková, 2012; Hyžný et al., 2012). Turek et al. (1988)
even suggested that callianassid ghost shrimps were among the first
decapods to colonize brackish environments. In this respect, the
morphological similarities between Egbellichnus burrow parts and the
burrows of extant Lepidophthalmus (Fig. 10A–B), invading freshwater
habitats are worth noting. Lepidophthalmus is known from the
Oligoceneof theCentral Paratethys (Hyžný andDulai, 2014) and recent-
ly the genus also has been documented from Lower Miocene settings
(Gašparič and Hyžný, 2014).

Although it is speculative to argue for generic identification of the
tracemaker, it can be demonstrated that the ghost shrimp lineage
inhabiting present-day environments with great salinity fluctuations
also was present in the Central Paratethys. The Egbellichnus burrow
systems preserved at Gbely, thus, document survival of ghost shrimps
long after the closure of all seaways. In this sense, it is the only,
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although indirect, record of callianassids from brackish lake environ-
ments reported thus far.

5. Concluding remarks

(1) The Late Miocene ichnoassemblage of the Bzenec Formation
exposed at the Gbely section (the Vienna Basin, Slovakia) is
characterized by low diversity, relatively simple structures and
presence of monospecific suites. These aspects are typical for
brackish-water trace fossil assemblages; indeed, the previous
study of the section interpreted the settings as a brackish-water
environment influenced by freshwater input (Starek et al.,
2010). At that time, the Vienna Basin was an embayment of the
large, long-lived Lake Pannon.

(2) A new ichnotaxon, Egbellichnus jordidegiberti igen. et isp. nov., is
described from the Gbely section. Egbellichnus is interpreted as
part of a complex open burrow system and is distinguished
from other related ichnotaxa by a combination of typically
inclined cylindrical burrow parts, absence of lining, and tunnels
making loops or bends at approximately right angles.

(3) Based on evidence from palaeoenvironmental reconstruction
and burrowmorphology the tracemaker of Egbellichnus is identi-
fied as a member of the family Callianassidae. Ghost shrimps of
this family are able to tolerate high salinity fluctuations and con-
struct very complex burrow systems.

(4) Today, no ghost shrimps are known from long-lived brackish
lakes. Egbellichnus, if interpreted correctly, is thus the only,
although indirect, evidence for the persistence of a ghost shrimp
in a brackish lake.
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