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Palaeoecological data are unique historical archives that extend back far
beyond the last several decades of ecological observations. However, the
fossil record of continental shelves has been perceived as too coarse (with
centennial-millennial resolution) and incomplete to detect processes occur-
ring at yearly or decadal scales relevant to ecology and conservation.
Here, we show that the youngest (Anthropocene) fossil record on the north-
ern Adriatic continental shelf provides decadal-scale resolution that
accurately documents an abrupt ecological change affecting benthic commu-
nities during the twentieth century. The magnitude and the duration of the
twentieth century shift in body size of the bivalve Corbula gibba is unprece-
dented given that regional populations of this species were dominated
by small-size classes throughout the Holocene. The shift coincided with
compositional changes in benthic assemblages, driven by an increase from
approximately 25% to approximately 70% in median per-assemblage abun-
dance of C. gibba. This regime shift increase occurred preferentially at sites
that experienced at least one hypoxic event per decade in the twentieth
century. Larger size and higher abundance of C. gibba probably reflect eco-
logical release as it coincides with an increase in the frequency of seasonal
hypoxia that triggered mass mortality of competitors and predators.
Higher frequency of hypoxic events is coupled with a decline in the depth
of intense sediment mixing by burrowing benthic organisms from several
decimetres to less than 20 cm, significantly improving the stratigraphic res-
olution of the Anthropocene fossil record and making it possible to detect
sub-centennial ecological changes on continental shelves.
1. Introduction
Although high-resolution time series based on monitoring of living assemblages
(LAs) can directly detect the dynamics of marine ecosystem responses to natural
or anthropogenic stressors [1–4], their duration is typically decadal [5,6]. This tem-
poral extent limits their ability to detect former baseline states or discriminate
short-term fluctuations from sustained regime shifts (i.e. a large, abrupt and
persistent shift in ecosystem structure, [7]). By contrast, stratigraphic records that
archive much longer time series can successfully detect long-term ecosystem
shifts driven by pollution, deoxygenation, eutrophication or overfishing that
occurred over the past centuries ormillennia [8–12]. These changes can be compar-
able in magnitude to those that occurred during ecological crises associated with
mass extinctions [13–15]. However, determining whether the ecological changes
were gradual or abrupt on the basis of the stratigraphic record is hindered by
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Figure 1. Size distributions of C. gibba in Holocene transgressive (TST) and highstand (HST) assemblages, and in Anthropocene (twentieth century) death assemblages
(DAs) in the northern Adriatic Sea. (a) Holocene–Anthropocene site pairs based on eight selected sites show that right-skewed and thin-tailed HST assemblages (black) are
replaced by bimodal (under low time averaging) or heavy-tailed (under high time averaging) Anthropocene assemblages (white). The labels summarize sites analysed in
this study: 1, Po Plain core S10; 2, Po 4; 3, Po 3; 4, Venice; 5, site D2; 6, Bay of Panzano (transect with seven Van Veen grab sites and two sites with sediment cores); 7,
Piran 1; 8, Piran 2; 9–10, Rovinj 120 and 38; 11, Brijuni. The shift in size structure at sites with high time averaging (sites 5 and 10) is based on shells with (white) and
without (black) periostracum. (b) The size structure of C. gibba differs between Holocene (TST and HST) and Anthropocene (ANT) assemblages at sites greater than 8 m
water depth (white circles), and at sites less than 8 m depth (white triangles) in principal coordinate analysis (PCO) analysis based on 10–30 cm-thick increments. The
highstand–Anthropocene (HST–ANT) assemblages at sites with high time averaging are based on shells with periostracum (grey squares).
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hiatuses (induced by erosion and non-deposition) and time
averaging (mixing of non-contemporaneous generations)
[16,17], unless bioturbation is limited and erosion is rare or epi-
sodic as in lacustrine, hypersaline or anoxic environments
[18–20]. As a result, benthic fossil assemblages from continental
shelves—settings that provide the bulk of the deep-time
palaeontological data on ecological dynamics—are incomplete
and temporally mixed over 102–104 year time scales [21]. The
hiatuses and time averaging of bioturbated sediments can
result in a fossil record that underestimates the magnitude of
ecological change over a given timespan [22,23]. Conversely,
hiatuses can produce stratigraphic patterns mimicking abrupt
ecological shifts occurring over a short stratigraphic distance
even when the actual pace of ecosystem change was gradual
[24], further confounding assessments of ecological turnover
on the basis of stratigraphic records.

The Holocene record provides a unique testing opportunity
for assessing whether the response of marine ecosystems to gra-
dual or abrupt pressures can be resolved from stratigraphic
records. Absolute dating of multiple shells embedded in sedi-
ment cores allows reconstructing the chronological record
regardless of time averaging (i.e. fossils can be aligned into a
timeseries independentlyof their stratigraphicposition) andcon-
trasting it against the stratigraphic record (i.e. fossils are assigned
to the mean age of a sedimentary layer in which they are
embedded). Here,we test whether the responses of benthic com-
munities to eutrophicationandhypoxic events in theAdriatic Sea
that intensified during the late twentieth century (figure 1a) are
detectable in the Anthropocene stratigraphic record (informally
denoting here the twentieth and twenty-first centuries). Specifi-
cally, we (i) assess chronologic and stratigraphic changes in
body size of an opportunistic, hypoxia-tolerant bivalve (Corbula
gibba) collected in sediment cores, and (ii) compare composition
of pre-twentieth century Holocene mollusc assemblages with
Anthropoceneassemblages.Our results demonstrate that biotur-
bated sediment cores can generate high-resolution archives of
ecological changes induced by hypoxia, which can suppress
sediment mixing by burrowing organisms and, consequently,
enhance the temporal resolution of the resulting fossil record.

To identify regime shifts, we focus on body size because this
attribute tracks ecosystem changes during natural [25,26] and
anthropogenic disturbances [27] and predicts present-day
extinction risks for marine molluscs [28]. We combine body
size estimates based on valve length of the infaunal bivalve
C. gibba from death assemblages (DAs) collected in sediment
cores and Van Veen grabs with formerly published estimates
of time averaging based on radiocarbon-calibrated amino acid
racemization (AAR; figure 2, see the electronic supplementary
material and the Dryad Digital Repository: https://doi.org/
10.5061/dryad.t4b8gthzr [29]). First, we quantify the pattern
and timingof shift inbodysize in chronological andstratigraphic
records using the threshold regression [30] andmodels assessing
their directionality [31,32]. Second,we evaluate the sensitivity of
the preserved stratigraphic record of a regime shift to increasing
time averaging. Third, we assess whether the shifts in body size
covary with estimates of relative frequency of seasonal hypoxia
and whether they coincide with compositional changes in mol-
luscan communities.
2. Methods
(a) Sediment cores and time averaging
DAsofC. gibbawere collected in sediment cores andVanVeen grabs
in the northern Adriatic Sea. First, 1.5 m long piston cores were col-
lected at eight sites at water depths between 10 and 44 m in 2013
(two sites at the Po prodelta, two sites at the Isonzo prodelta, two
sites off Piran and one site at Venice and Brijuni). Second, the 26 m
long Holocene succession of the S10 core was drilled near Comac-
chio (Po coastal plain; [33]). Third, Van Veen grabs (approx. upper
10 cm of the sediment column) were collected at 14 sites at Po pro-
delta (two sites), off Venice (two sites), off Rovinj (two sites) and
in the Bay of Panzano (Isonzo prodelta) (eight sites) (electronic
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Figure 2. The size and compositional regime shift between Holocene and Anthropocene assemblages and the effect of frequency of hypoxic events on shell size of
C. gibba. (a) Density kernels show that the Frechet distances from the Holocene centroid to Anthropocene assemblages (light grey) exceed those between Holocene
assemblages and their centroid (dark grey). (b) The relationship between the 95th percentile log-length of C. gibba in DAs (based on specimens with periostracum
only) and the relative frequency of seasonal hypoxia between 1980 and 2010 points to an abrupt nonlinear increase in size when a seasonal hypoxic event occurs at
least once per decade. (c) Compositional overlap between Holocene and Anthropocene assemblages: density kernels show that the Bray–Curtis distances from the
Holocene centroid to Anthropocene living assemblages (LAs; light grey) are larger than those among the Holocene death assemblages (dim grey). Anthropocene
death assemblages (DAs; dark grey) have intermediate position. (d ) The distribution of C. gibba relative abundance, with less than 20% in Holocene assemblages
and greater than 90% in Anthropocene LAs. (e) Genus-level compositional separation between Holocene (TST and HST), Anthropocene DAs and Anthropocene LAs in
principal coordinate analysis (PCO). The size of the bubble plots is scaled to abundance of C. gibba relative to abundance of all molluscs.
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supplementary material, figure S1). Estimates of increment median
ages, sedimentation rates and time averaging were based on shell
ages (AAR calibrated by 14C) of four molluscan species [34–39].
Time averaging corresponds to an inter-quartile age range in
years (IQR) in approximately 10–30 cm thick units [34–37,40,41].
Net sedimentation rate was approximately 0.3 cm y−1 during the
transgressive phase (TST) and 1–2 cm y−1 during the highstand
phase (HST) at the Po prodelta, 0.2–0.4 cm y−1 during the HST at
the Isonzo prodelta, and approximately 0.01 cm y−1 during the
TST and HST off Istria and in the Gulf of Venice [34–37,40,41]. The
uppermost sediment core increments corresponding to twentieth–
twenty-first centuries do not show any signs of change in the
sedimentation rate [34]. These differences in net sedimentation
rates partly translate to differences in time averaging. First, highly
time-averaged assemblages (IQR= approx. 1000–2000 years) occur
in TST (cores from the Po Plain, Venice, Piran and Brijuni) and
HST increments (Venice, Piran, Brijuni), including mixtures of
highstand and Anthropocene shells in topcore and surface DAs at
Rovinj, Venice, Piran and Brijuni. Second, weakly time-averaged
assemblages (IQR= approx. 10–200 years) occur in HST and
Anthropocene increments of the cores fromPoand Isonzoprodeltas.
These cores at Po and Isonzo prodeltas show a significant decline in
time averaging in post-nineteenth century increments from 101 to
100 and from 102 to 101 years, respectively [34].
(b) Size data
We measured shell size with the length of right valves in 20 774
specimens of C. gibba. Chronological analyses of length distri-
butions are based on specimens from two Po cores that were
directly dated [34] and were partitioned into 5 year age cohorts
(electronic supplementary material, table S1 and S2). Strati-
graphic analyses of length distributions are performed (i) at the
scale of 5–10 cm thick increments in cores and (ii) by pooling
these increments into 10–30 cm thick units characterized by
homogeneous sedimentologic composition (72 units in total).
Moreover, the analyses are also performed at two spatial scales,
including (i) pooling closely located sites into three localities
(Po, Isonzo, Piran), and (ii) at the scale of eight individual sites
(electronic supplementary material, table S1, S3 and S4). Size
data are available in the electronic supplementary material, S2.
(c) Multivariate size analyses
We assessed whether size structure underwent a shift in the
twentieth century to a new state, using principal coordinate analy-
sis (PCO), with the Frechet distances between 10 and 30 cm thick
units, based on proportional abundances of 1 mm cohorts (elec-
tronic supplementary material, figure S2A and B). All units are
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assigned to four stratigraphic intervals, including (i) TST (between
10–7 kyr cal BP), (ii) HST, here referring to increments deposited
prior to the late twentieth century, (iii) Van Veen grabs and topcore
samples (uppermost 10–20 cm) with a strongly time-averaged
mixture of the HST and post-nineteenth-century sediments depos-
ited under less than 0.01 cm y−1 (HST-Anthropocene), and (iv) the
topcore samples at Po and Isonzo prodeltas deposited under
greater than 0.2 cm y−1 and corresponding to the Anthropocene.
We modified analogue matching analyses to assess whether size-
frequency distributions of Anthropocene Corbula populations
represent a novel state, i.e. whether they extend beyond the
variation defined by all Holocene (TST and HST) Corbula popu-
lations. These analyses evaluate whether Frechet distances
between the Holocene centroid and Anthropocene assemblages
exceed distances between the Holocene centroid and Holocene
assemblages ([38,39,42], electronic supplementary material, S3
and S4). We evaluated differences in size structure between
four stratigraphic units with permutational multivariate analysis
of variance (PERMANOVA, [43]). Periostracum is usually not
preserved on C. gibba valves older than 100 years (electronic
supplementary material, figure S3), so the mixing of the twentieth
century specimens with much older shells in topcore HST-
Anthropocene units can be minimized by analysing valves with
periostracum only. Therefore, PCO is based on 72 units (exhaus-
tive analyses based on all specimens of C. gibba) and on 66 units
including only valves with periostracum.

(d) Detection of regime shifts
We assessed whether the abrupt shift in (i) the mean and (ii) the
95% percentile log-length detected in the chronological records is
also preserved in the stratigraphic records. The mean length
captures the central tendency across the whole size-frequency
distribution, including juvenile specimens, whereas the 95%
percentile length is informative about the size-frequency distri-
bution of adult individuals. We use three approaches to detect
the regime shift, here approximated by changes in the shape of
the size-frequency distribution of C. gibba, one of the most abun-
dant molluscan species. First, a threshold regression identifies
abrupt shifts in size and their timing in chronological or strati-
graphic time series. We use an F statistic that evaluates whether
the model with one shift explains significantly more than the
model with just an intercept [30], and the adjusted R2 to compare
the threshold model with a simple linear model. Second, we fit
chronological or stratigraphic series of size to models [31] that
allow for one abrupt shift between two segments characterized
by either unbiased random walk, stasis or directional trends
(eight models in total, we set the minimum segment length to
seven increments; electronic supplementary material, table S3
and S4). The stasis model is considered as uncorrelated, normally
distributed variation in size (either in the mean or in the 95th per-
centile log-length), with temporal variance ω around a long-term
mean θ. Size is expected to converge immediately to θ from any
precursor (ancestral) value. Directional trend is modelled as a
change in size at each time step drawn from a normal distribution
of size changes, with non-zero mean µs and a variance δ2s .
A random walk is a special case of the directional trend in which
µs = 0. The punctuation model refers to one abrupt shift separated
by two segments of stasis with θ1 and θ2 and a single ω, and is thus
equivalent to the definition of the regime shift. Third, we assess
the effect of time averaging (i) on the model support for the
punctuation model and (ii) on temporal variability in size (ω of
the stasis model).

(e) Covariates of size shifts
We assess the response of the mean and the 95th percentile
log-length to a hypothesized driver—the relative frequency of sea-
sonal hypoxia (the number of years with minimum dissolved
oxygen concentrations less than 2 ml l−1, or less than approximately
3 mg l−1 [38] relative to the total number of years based onmeasure-
ments in 1980–2010 at 16 sites, see the electronic supplementary
material, S1)—with rank correlations and generalized additive
models. We also compare the taxonomic composition of the Holo-
cene (TST andHST)molluscan assemblages (deposited prior to the
twentieth century or during the earliest twentieth century; 95
assemblages from the cores used in the analyses of shell size)
with 54 Anthropocene DAs (late twentieth century deposits from
the uppermost core increments) and 223 Anthropocene LAs col-
lected since 1980s (data compiled from published sources). LAs
are based on Van Veen grab samples collected in multiple studies
of soft-bottom habitats in the Po prodelta and in the Gulf of Trieste
between 10–30 m water depth and are thus standardized to genus
level. Compositional differences are analysed with PCO, PERMA-
NOVA (Bray–Curtis distances based on square-root transformed
proportional abundances of genera), and with the modified
analogue matching by evaluating whether Anthropocene assem-
blages extend beyond the variation defined by the Holocene
assemblages (using Bray–Curtis distances [39,42–44]).

( f ) Sensitivity of the stratigraphic expression of regime
shifts to time averaging

In simulations, we assess how the support for the punctuation
model changes and how the volatility in size declines in the stra-
tigraphic record as time averaging increases from 1 up to 1000
years when compared to the true chronological pattern produced
by the regime shift (i.e. punctuation separated by two stasis seg-
ments). We simulate the effects of time averaging (i) on the
timing and the abruptness of the shift and (ii) on the estimate
of temporal variance in the mean and in the 95th percentile
log-length (ω) with two scenarios. In a first scenario, we assess
the sensitivity of ω in a stasis model with θ1 = 1 in a Holocene-
scale simulation with duration of 10 000 years, varying true ω
between 0.01 and 0.2 (values comparable to empirical estimates).
In a second scenario, tailored to the past 200 years to capture
sedimentation conditions at Po and Isonzo prodeltas, the
abrupt increase in size from θ1 = 1 (2.7 mm) to θ2 = 2 (7.4 mm)
occurs in 1950 and the true ω of non-averaged time series is set
to 0.01. In both scenarios, we sample 50 individuals in each of
the thirty increments (comparable to the number of increments
and sample sizes in 1.5 m cores) and fit time-averaged stratigraphic
series to eight size models with the same methods as empirical
chronological series. We repeat simulations 1000 times, estimate
means of ω in Holocene-scale simulations and compute model-
specific Akaike weights in Anthropocene simulations (electronic
supplementary material, S5).
3. Results
(a) Size shift in the northern Adriatic Sea
The size structure of C. gibba in Anthropocene assemblages
(figure 1b) does not overlap with TST (10–7 kyr cal BP) and
HST (approx. 7 kyr cal BP up to the nineteenth century) assem-
blages in PCO (figure 1b; electronic supplementary material,
table S5), and 50% of Anthropocene assemblages are farther
from the Holocene centroid in terms of the Frechet distances
than 97.5% of Holocene assemblages (figure 2a). TST and
HST increments do not differ in size structure and are both
characterized by right-skewed, thin-tailed distributions
dominated by individuals less than 5 mm (figure 1a). Anthro-
pocene assemblages from high sedimentation sites (greater
than 0.2 cm y−1) with centennial to decadal time averaging at
the Po and Isonzo prodeltas are characterized by bimodal
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distributions with abundant large individuals (greater than
10 mm; figure 1a). Low sedimentation sites with millennial
time averaging generated by mixing of Anthropocene and
HST assemblages show heavy-tailed distributions, with
individuals greater than 5 mm being moderately frequent
(figure 1a). The shift between the Holocene (TST and HST)
and Anthropocene assemblages is thus driven by the appear-
ance of abundant individuals greater than 10 mm in length.
The mean and the 95th percentile log-length of C. gibba in 16
DAs correlate positively with the proportion of years with at
least one hypoxic event at each of these sites (Spearman r
(mean) = 0.91, p = 0.005, r (95th percentile) = 0.82, p < 0.0001).
The 95th percentile log-length increases abruptly at frequency
of hypoxia equal to approximately 0.1 (one year with
hypoxic event per decade, figure 2b), suggesting that even a
sporadic hypoxia can be sufficient for the switch from the
right-skewed to the bimodal size distribution.

(b) Compositional shift in the northern Adriatic Sea
The size shift stratigraphically coincides with a major change
in the molluscan community composition. The Bray–Curtis
distances show that 82% of Anthropocene LAs are farther
from the Holocene centroid than 97.5% of Holocene assem-
blages (figure 2c). The abundance of C. gibba increases from
approximately 20 to 30% (95% confidence intervals on the
median relative abundance per sample) in TST and HST incre-
ments to 50–60% in time-averaged Anthropocene DAs and to
63–75% in Anthropocene LAs (figure 2d). Higher abundance
of C. gibba in soft-bottom habitats is associated with an increase
in abundance of deposit feeders (from 7 to 22%, driven mainly
by the infaunal bivalve Nucula). It is compensated by the
declines in abundance of the suspension-feeding gastropod
Turritellinella tricarinata (from 20% to 1.5%, excluding Corbula),
commensals (bivalves Kurtiella from 20% to 8% and Musculus
from 3% to less than 1%,), drilling gastropods (Euspira)
and scavengers (Tritia) (electronic supplementary material,
figure S7, electronic supplementary material, S6). PCO and
PERMANOVA show that the overlap between Anthropocene
assemblages andHolocene assemblages is negligible (figure 2e).
However, Anthropocene LAs and DAs also strongly differ in
their composition (figure 2e, electronic supplementarymaterial,
table S5).

(c) Chronological and stratigraphic record of size shifts
Threshold regressions and models assessing the directionality
of trends show that chronological records in size at Po prodelta
are best explained by an abrupt punctuational increase in the
mean log-length (from θ1 = 1.07 to θ2 = 1.53, with ω = 0.007)
and in the 95th percentile log-length (from θ1 = 1.6 to θ2 = 2.3,
with ω = 0.022) that occurredwithin a single decade at approxi-
mately 1950 AD (figures 3a and 4a). This shift separates
populations exhibiting stasis prior to and after 1950 AD
(right-skewed and bimodal distributions, respectively). Strati-
graphic records at sites with high sedimentation (greater than
0.2 cm y−1) at Po and Isonzo prodeltas also support a single
abrupt shift both in the mean and the 95th percentile log-
length (in the mid-twentieth century at 80–110 cm core depth
at Po and in the late nineteenth century at 30–35 cm at
Isonzo, figures 3b and 4b). These shifts are best explained
by the punctuation between two stasis segments or by the
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shift from stasis to random walk (figure 3b) and thus capture
similar dynamics as the chronological records. By contrast,
stratigraphic records at sites with low sedimentation rates
(approx. 0.01 cm y−1) either detect a size decline between
the TST and HST assemblages or do not show any shifts, and
produce estimates of ω that are smaller than at Po and Isonzo
(figure 4c). Although the signature of the size increase in
the twentieth century is mostly lost at these sites, it is still
partly preserved by heavy-tailed distributions of the strongly
time-averaged mixtures of highstand and Anthropocene
shells, which are distinct from the TST and HST assemblages
that are consistently dominated by small-size individuals
(figure 1b). These heavy-tailed assemblages become bimodal
when old shells without the surficial periostracum layer are
excluded (electronic supplementary material, figure S2 and
S3). Therefore, body size changes during the Holocene until
the twentieth century are of smaller magnitude than the size
increase observed in the twentieth century.

Although the Po and Isonzo records with the upcore tran-
sition from centennial to decadal averaging in the twentieth
century deposits capture the abrupt increase in size relatively
well, size changes at sites with millennial averaging are very
muted and support a single stasis model (figure 3b). This
difference in the stratigraphic expression of size pattern is
confirmed by simulations of abrupt size increase in 1950 AD,
which predict that the punctuation is preservedwhen themag-
nitude of time averaging does not exceed approximately 20–50
years (figure 4d,e). The variance (ω) in themean and in the 95th
percentile log-length declines by two orders ofmagnitudewith
time averaging increasing from decadal to millennial values,
both in the empirical and simulated stratigraphic records
(figure 4c,f ). Time averaging thus pulls the size trajectory in
the stratigraphic record towards stronger stasis and towards
very small ω at sites with slow sedimentation. This effect is lim-
ited at Po and Isonzo because punctuations at these sites on
the transition to the Anthropocene increments coincide with
a two- to threefold decline in time averaging: from 25–50 to
approximately 10–30 years at Po and from 75 to approximately
10–20 years at Isonzo (figure 2). The stratigraphic records at
the Po and Isonzo prodeltas thus distinctly preserve the twen-
tieth century regime shift under high or moderate sediment
accumulation rates because time averaging of the late twentieth
century assemblages is reduced.
4. Discussion
Corbula gibba size increased abruptly from 5 to 10–15 mm in
the whole northern Adriatic Sea during the twentieth century,
contrasting starkly with the rarity of such large specimens in
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the pre-Anthropocene record (figures 1a, 2a,b). This change
in size distribution of the dominant species reflects a commu-
nity-wide regime shift, because it was associated with a major
turnover in both taxonomic and functional composition of the
molluscan assemblages (figure 2c,d, electronic supplementary
material, figure S7). Although C. gibba was a persistent subset
of molluscan communities during the Holocene [45,46], it
became dominant relative to molluscan suspension feeders
and other functional groups in the twentieth century (electronic
supplementary material, figure S7). The bimodality of abun-
dances of C. gibba prior to and after the transition in the
twentieth century (with modes at approximately 20% and
90%, respectively; figure 2d) is diagnostic of an abrupt ecologi-
cal transition [47]. The latest twentieth century LAs still differs
from the time-averaged Anthropocene DAs. The intermediate
position of Anthropocene DAs between the older Holocene
assemblages and Anthropocene LAs (figure 2c,e) thus indicat-
ing that even at Po and Isonzo prodeltas where sedimentation
rates are relatively high, the proportional abundance of
C. gibba in DAs is still reduced by the mixing with older shells
from other molluscan species.

Several lines of evidence indicate that the regime shift was
driven by a transition towards higher frequency of seasonal
hypoxia. First, the increase in size and dominance of C. gibba
coincided with the late twentieth century eutrophication
coupled with a general increase in the frequency of hypoxic
events [48]. Although seasonal hypoxia occasionally affected
benthic communities also prior to the twentieth century, the
recurrence of hypoxic events was less frequent [34]. Second,
C. gibba populations that did not experience an increase in
size during the twentieth century were limited to the shallow-
est or high-energy habitats at the Isonzo prodelta and off
Venice. They were thus not subjected to seasonal hypoxia, in
contrast with deeper habitats located below the thermocline
and experiencing annual to inter-annual frequencies of
hypoxic events at the Po prodelta [49] and less regular hypoxic
events in the Gulf of Trieste [50]. Third, size in DAs increases
geographically with the relative frequency of seasonal hypoxia
at 16 sites (figure 2b). The abrupt increase in the 95th percentile
log-length at sites with at least one hypoxic event per decade
indicates that the shift between the two states follows a
threshold-type dynamic [11].

Direct biological observations showed that seasonal mass
mortalities in the late twentieth century in the Adriatic Sea
negatively affected predators and substrate-destabilizing
bioturbators, including burrowing shrimps, infaunal echi-
noids, holothurians, predatory asteroids and muricid
gastropods [51]. The recovery of these taxa in the wake of
hypoxic events in the northern Adriatic Sea is delayed and
occurs over several years [52]. This allows C. gibba with
hypoxia tolerance [53] andwith rapid re-colonization potential
[54–57] to dominate benthic communities also in years with
persistently normoxic conditions. We thus hypothesize that
the increase in body size and dominance of C. gibba, both
responding to the shift of the northern Adriatic to higher fre-
quency of disturbance by hypoxia, is driven by ecological
release [58] from predation, competition and trophic amensal-
ism. This release hypothesis is congruent with the decline in
abundance of predatory gastropods observed here and with
a major decline in abundance of bulldozing infaunal echinoids
(that can negatively affect slow-burrowing bivalves such as C.
gibba), whichwas observed in the northernAdriatic Sea during
the late twentieth century [59,60].
Ascanbeexpected, lowsedimentation rates that lead tomulti-
decadal or millennial time averaging will strongly reduce tem-
poral variance in body size and will bias abrupt shifts towards
gradual trends. However, high sedimentation rates (greater than
0.2 cm y−1) are also not sufficient for the preservation of high-res-
olution ecological dynamics in the fossil record if associated with
deep sedimentmixingbybioturbation.Timeaveragingof thepre-
sent-day 10–20 cm thickmixed layer [34,61] can be expected to be
approximately 10–20 years under sedimentation rates of 1 cm y−1

at Po prodelta, which is consistent with the observed values of
time averaging in the late twentieth century sediments. However,
timeaveragingof approximately25–50years, the lackofpreserva-
tion of flood layers and stronger mottling in pre-Anthropocene
sediments at the Po and Isonzo prodeltas indicate that the thick-
ness of the mixed layer exceeded approximately 25 cm prior to
1950 AD [34,62]. This decline in time averaging was not associ-
ated with an increase in sedimentation rates. Therefore, under
naturally deeper sediment mixing prior to anthropogenic
increase in hypoxia, multi-decadal time averaging would oblit-
erate the stratigraphic signal of abrupt ecological shifts even
under high sedimentation rates (figure 4d,e).

The temporal association of the size and compositional
changes in themolluscan communitywith the declining biotur-
bation indicates a common cause behind the regime shift and its
increased preservation potential in the fossil record. The preser-
vation of abrupt regime shifts in the stratigraphic record is
triggered by the pervasive ecosystem change of decadal-scale
duration that is associated with the decline in the depth of sedi-
ment mixing by burrowers, especially in settings with high to
moderate net accumulation rates and without long hiatuses.
The Anthropocene regime shift in the macrobenthic commu-
nities in the northern Adriatic Sea is not only unprecedented
relative to the Holocene history but is also sufficiently strong
and temporally persistent to be distinctly preserved in the stra-
tigraphic record, paralleling Anthropocene shifts in microbiotic
proxies documented in marginal marine environments [63,64].
The differences in the intensity of bioturbation between (i) per-
turbation regimes with limited mixing by bioturbation and (ii)
background regimeswith intense anddeepmixing bybioturba-
tion can thus generate a dichotomy in the resolution of the
marine fossil record on continental shelves. On one hand, the
majority of the fossil record that formed in shelf ecosystems
with intense bioturbation is probably averaged to centuries or
millennia and rich in gaps [65], as is also observed in the
nothern Adriatic Sea [66,67]. On the other hand, the window
for preservation of highly resolved ecological dynamic opens
in the aftermath of anoxic and hypoxic events (leading to lim-
ited or totally absent bioturbation, [68–71]) on the present-day
marine shelves and was probably open in the wake of major
ecosystem perturbations in the geological past [73–74].
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