#HOMOGENEITY OF MULTIVARIATE DISPERSIONS MODIFIED FOR COMPOSITIONAL FIDELITY #ANALYSES (LIVING VERSUS DEATH ASSEMBLAGES) FOR EQUAL NUMBER OF LIVING AND DEATH #ASSEMBLAGES #The function fidpartitioning has two arguments: #distance - is a distance structure returned by dist or vegdist #livedead - is a data frame with species in rows and samples in columns, starting #with living assemblage samples, #followed by death assemblage samples #The number of living and death assemblages must be equal (balanced design) #vegan and ade4 packages are required #the function is analogous to betadisper() in the vegan package but it returns #distances between individual assemblages #from one group (death assemblages) and centroid of assemblages from the second #group (living assemblages) #the function thus returns (1) distances between death assemblages and centroid of #living assemblages, #(2) distances between living assemblages and centroid of living assemblages, (3) #95% bootstrapped confidence intervals for #means, and (4) p value that evaluates whether death assemblages are significantly #less or more dispersed relative #to the centroid of living assemblages than are living assemblages #the number of runs for bootstrapping is 100 and for permutation test 1000 #References for libraries: ade4 package: #S. Dray and A.B. Dufour. 2007. The ade4 package: implementing the duality diagram #for ecologists. #Journal of Statistical Software 22(4):1-20. #Thioulouse, J., D. Chessel, S. Dolédec, and J. M. Olivier. 1996. ADE-4: a #multivariate analysis and #graphical display software. Statistics and Computing 7:75-83. #vegan package: Jari Oksanen, Roeland Kindt, Pierre Legendre, Bob O'Hara, Gavin L. #Simpson, M. Henry H. Stevens #and Helene Wagner (2008). vegan: Community Ecology Package. R package version #1.13-1. vegan.r-forge.r-project.org/ #REFERENCE FOR FUNCTION: Tomasovych, A., and Kidwell S.M. 2010. Accounting for the #effects of biological variability and temporal autocorrelation in #assessing the preservation of species abundance. Paleobiology #LIBRARIES require(vegan) require(ade4) ################################################################################################################################## #ARBITRARY RANDOMIZED INPUT TABLE WITH 8 LIVING ASSEMBLAGES AND 8 DEATH ASSEMBLAGES livedead<-array(0, dim=c(50,16)) method="bray" for (i in 1:ncol(livedead)) { livedead[,i]<-runif(50,0,1) } livedead<-decostand(livedead, method="total", MARGIN=2) ################################################################################################################################### #THIS IS THE FUNCTION fidpartitioning<-function(livedead, method=method) { livedead<-livedead; grouping<-c(rep(1,ncol(livedead)/2), rep(2,ncol(livedead)/2)); method=method; if (method=="horn") {distance<-vegdist(t(livedead),method="horn")} if (method=="bray") {distance<-vegdist(t(livedead),method="bray")} if (method=="hellinger") {distance<-vegdist(t(sqrt(livedead)),method="bray")} if (method=="sorenson") {distance<-vegdist(t(livedead),method="bray", binary=T)} if (method=="jaccard") {distance<-vegdist(t(livedead),method="jaccard", binary=T)} if (method=="gower") {distance<-vegdist(decostand(t(livedead), "log"), "altGower")} if (method=="euclidean") {distance<-vegdist(t(livedead),method="euclidean")} #PRINCIPAL COORDINATE ANALYSIS USING ADE4 PACKAGE tol = -1; distmat <- as.matrix(distance);n <- ncol(distmat) row.w <- rep(1, n) row.w <- row.w/sum(row.w) delta <- -0.5 * bicenter.wt(distmat * distmat, row.wt = row.w, col.wt = row.w) wsqrt <- sqrt(row.w) delta <- delta * wsqrt delta <- t(t(delta) * wsqrt) eig <- eigen(delta, symmetric = TRUE) lambda <- eig$values w0 <- lambda[n]/lambda[1] r <- sum(lambda > (lambda[1] * tol)) nf<-r res <- list() res$eig <- lambda[1:r] #list of eigenvalues res$rank <- r res$cw <- rep(1, r) w <- t(t(eig$vectors[, 1:r]) * sqrt(abs(lambda[1:r])))/wsqrt w <- data.frame(w) res$tab <- w res$li <- data.frame(w[, 1:nf]) #eigenvectors - principal coordinates #ESTIMATE THE NUMBER OF POSITIVE AND NEGATIVE EIGENVALUES positive<-sum(res$eig > 0); negative<-sum(res$eig < 0); #CHECKING WHETHER DISTANCES IN PCO SPACE ARE EQUAL TO MATRIX DISTANCES #d1<-designdist(res$li[,1:positive],method="(A+B-2*J)", terms=c("quadratic")) #d2<-designdist(res$li[,(positive+1):(positive+negative)],method="(A+B-2*J)", terms=c("quadratic")) #originaldistance<-sqrt(d1-d2) #restoring distance from the complete PCO space #ESTIMATE DISTANCES BETWEEN DEATH ASSEMBLAGES AND CENTROID OF LIVING ASSEMBLAGES (TOTAL LIVE-DEAD VARIATION) #COMPUTE CENTROID LOCATION OF LIVING ASSEMBLAGES #FOR POSITIVE EIGENVALUES livecentroid1<-rep(NA, length(NA)) for (i in 1:positive) {livecentroid1[i]<-mean(res$li[1:(ncol(livedead)/2),i]) } #FOR NEGATIVE EIGENVALUES if (negative > 0) {livecentroid2<-rep(NA, length(NA)) for (i in (positive+1):(positive+negative)) {livecentroid2[i]<-mean(res$li[1:(ncol(livedead)/2),i]) } } #DISTANCES BETWEEN DEATH ASSEMBLAGES AND CENTROID OF LIVING ASSEMBLAGES FOR POSITIVE EIGENVALUES if (length(livecentroid1) == 1) {n1<-append(livecentroid1, res$li[((ncol(livedead)/2)+1):ncol(livedead),1:positive]) } if (length(livecentroid1) > 1) {n1<-rbind(livecentroid1, res$li[((ncol(livedead)/2)+1):ncol(livedead),1:positive]) } nn1<-designdist(n1,method="(A+B-2*J)", terms=c("quadratic")) #distances between centroid and all assemblages (living and death) positiveLDdistances<-as.vector(nn1[1:(ncol(livedead)/2)]) #extract distances between centroid of LA and death assemblages only #DISTANCES BETWEEN DEATH ASSEMBLAGES AND CENTROID OF LIVING ASSEMBLAGES FOR NEGATIVE EIGENVALUES if (negative == 0) {LCdead<-sqrt(positiveLDdistances) } if (negative > 1) {n2<-rbind(livecentroid2[(positive+1):(positive+negative)], res$li[((ncol(livedead)/2)+1):ncol(livedead),(positive+1):(positive+negative)]) nn2<-designdist(n2,method="(A+B-2*J)", terms=c("quadratic")) #distances between centroid and all assemblages (living and death) negativeLDdistances<-as.vector(nn2[1:(ncol(livedead)/2)]) #extract distances between centroid of LA and death assemblages only LCdead<-sqrt(abs(positiveLDdistances-negativeLDdistances)) } if (negative == 1) {n2<-append(livecentroid2[(positive+1):(positive+negative)], res$li[((ncol(livedead)/2)+1):ncol(livedead),(positive+1):(positive+negative)]) nn2<-designdist(n2,method="(A+B-2*J)", terms=c("quadratic")) negativeLDdistances<-as.vector(nn2[1:(ncol(livedead)/2)]) LCdead<-sqrt(abs(positiveLDdistances-negativeLDdistances)) } #DISTANCES BETWEEN LIVING ASSEMBLAGES AND CENTROID OF LIVING ASSEMBLAGES FOR POSITIVE EIGENVALUES if (length(livecentroid1) == 1) {n1<-append(livecentroid1, res$li[1:(ncol(livedead)/2),1:positive])} if (length(livecentroid1) > 1) {n1<-rbind(livecentroid1, res$li[1:(ncol(livedead)/2),1:positive])} nn1<-designdist(n1,method="(A+B-2*J)", terms=c("quadratic")) #all distances between centroid and among samples for positive eigenvalues positiveLLdistances<-as.vector(nn1[1:(ncol(livedead)/2)]) #DISTANCES BETWEEN LIVING ASSEMBLAGES AND CENTROID OF LIVING ASSEMBLAGES FOR NEGATIVE EIGENVALUES if (negative == 0) {LClive<-sqrt(positiveLLdistances) } if (negative > 1) {n2<-rbind(livecentroid2[(positive+1):(positive+negative)], res$li[1:(ncol(livedead)/2),(positive+1):(positive+negative)]) nn2<-designdist(n2,method="(A+B-2*J)", terms=c("quadratic")) negativeLLdistances<-as.vector(nn2[1:(ncol(livedead)/2)]) LClive<-sqrt(abs(positiveLLdistances-negativeLLdistances)) } if (negative == 1) {n2<-append(livecentroid2[(positive+1):(positive+negative)], res$li[1:(ncol(livedead)/2),(positive+1):(positive+negative)]) nn2<-designdist(n2,method="(A+B-2*J)", terms=c("quadratic")) negativeLLdistances<-as.vector(nn2[1:(ncol(livedead)/2)]) LClive<-sqrt(abs(positiveLLdistances-negativeLLdistances))} #95% BOOTSTRAPPED CONFIDENCE INTERVALS FOR DISTANCES OF LIVING ASSEMBLAGES TO CENTROID OF LIVING ASSEMBLAGES-LClive #AND FOR DISTANCES OF DEATH ASSEMBLAGES TO CENTROID OF LIVING ASSEMBLAGES - LCdead n<-ncol(livedead)/2 LCdead.resample<-rep(NA,n);LClive.resample<-rep(NA,n); num.rep<-100 LCdeadmean.resample<-rep(NA,num.rep); LClivemean.resample<-rep(NA,num.rep); for (i in 1:num.rep) { for (j in 1:n) { LCdead.resample[j]<-sample(LCdead,1,replace=T) LClive.resample[j]<-sample(LClive,1,replace=T) } LCdeadmean.resample[i]<-mean(LCdead.resample) LClivemean.resample[i]<-mean(LClive.resample) } LCdeadci<-quantile(LCdeadmean.resample, c(0.025,0.975),na.rm=T) LCliveci<-quantile(LClivemean.resample, c(0.025,0.975),na.rm=T) #TOTAL LIVE-DEAD VARIATION IN TERMS OF SUM OF SQUARED DISTANCES SST = sum(LCdead^2) #PREMORTEM VARIATION IN TERMS OF SUM OF SQUARED DISTANCES SSL = sum(LClive^2) #PERMUTEST USING VEGAN PACKAGE control = permControl(nperm = 1000) xdistances<-append(LCdead,LClive) xgroup<-grouping nobs <- length(xdistances) mod <- lm(xdistances ~ xgroup) mod.Q <- mod$qr p <- mod.Q$rank resids <- qr.resid(mod.Q, xdistances) res <- numeric(length = control$nperm + 1) res[1] <- summary(mod)$fstatistic[1] for (i in seq(along = res[-1])) { perm <- permuted.index2(nobs, control = control) perm.resid <- resids[perm] f <- qr.fitted(mod.Q, perm.resid) mss <- sum((f - mean(f))^2) r <- qr.resid(mod.Q, perm.resid) rss <- sum(r^2) rdf <- nobs - p resvar <- rss/rdf res[i + 1] <- (mss/(p - 1))/resvar } pvalue <- sum(res >= res[1])/length(res) out <- list("Distances between DAs and centroid of LA" = LCdead, "Distances between LAs and centroid of LA" = LClive, "Magnitude of total live-dead variation (mean centroid of LA-DA distance)" = mean(LCdead), "Magnitude of premortem variation (mean centroid of LA-LA distance)" = mean(LClive), "Magnitude of postmortem variation (can be negative)" = mean(LCdead)-mean(LClive), "95% CI for mean centroid of LA-DA distance" = LCdeadci, "95% CI for mean centroid of LA-LA distance" = LCliveci, "F value"=res[1], "P value for homogeneity of dispersions" = pvalue, "Premortem variation (sum of squared dissimilarities-SSL)"=SSL, "Total live-dead variation (sum of squared dissimilarities-SST)"=SST) class(out) <- "fidelity" out }